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ABSTRACT 

Growth retardants are essential tools in modern agriculture and horticulture, helping regulate excessive 

vegetative growth, improve crop yield, enhance stress tolerance and optimize overall plant quality. 

Paclobutrazol (PBZ) is among the most extensively utilized synthetic growth retardants, recognized for 

its ability to regulate plant growth without interfering with developmental processes or causing 

phytotoxicity. This compound is chemically described as β-(4-chlorophenyl)methyl-α-(tert-butyl)-1H-

1,2,4-triazole-1-ethanol. PBZ suppresses gibberellin biosynthesis by inhibiting the transformation of ent-

kaurene into ent-kaurenoic acid leads to a significant reduction in shoot elongation. Moreover, It 

regulates the signaling pathways of other plant hormones, including cytokinins and abscisic acid, thereby 

further influencing plant growth and development. Paclobutrazol has been extensively studied for its 

diverse applications across various crops. In fruit crops, it restricts excessive vegetative growth, induces 

early flowering, enhances fruit set, manages biennial bearing and facilitates high-density planting 

systems. In vegetable and field crops, it reduces plant height, increases stress tolerance, enhances 

chlorophyll content, prevents lodging, minimizes disease incidence and improves seed yield and quality. 

In floricultural crops, it is primarily used for height control and increased plant compactness as well as 

enhancing their ornamental value. Given its wide-ranging benefits, paclobutrazol has emerged as a 

valuable growth regulator for improving plant architecture, productivity and stress resilience. However, 

its precise application rates and effects vary depending on crop species, environmental conditions and 

agronomic practices. This review compiles and analyzes research findings on the impact of paclobutrazol 

across multiple crop species, highlighting its role in sustainable agriculture and efficient crop 

management. 
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Introduction 

In India, plant growth retardants are used to a 

limited extent, whereas in many other countries, they 

have been incorporated as key elements in 

contemporary farming systems. The American Society 

for Horticultural Sciences identifies chemical growth 

regulation as one of the eight key research priorities in 

horticultural science. The development of several 

highly effective growth retardants in recent years has 

significantly enhanced the potential applications of 

chemical growth regulation in horticulture (Yadav et 

al., 2025). Synthetic substances called plant growth 

retardants shorten plant shoots without altering their 

developmental patterns or posing any phytotoxicity 

risks. This is mostly accomplished by decreasing cell 

elongation as well as decreasing the rate of cell 

division.  

For the time being, plant growth inhibitors are 

categorized into four primary groups based on their 

modes of action. The first group comprises onium 

compounds, including chlormequat chloride, mepiquat 

chloride, chlorphonium and AMO-1618- which act 
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initially on gibberellin (GA) biosynthesis by inhibiting 

cyclase enzymes such as copalyl diphosphate synthase 

and ent-kaurene synthase. The second group consists 

of nitrogen-containing heterocyclic compounds like 

ancymidol, flurprimidol, tetcyclacis, uniconazole-P, 

paclobutrazol and inabenfide. These function by 

obstructing cytochrome P450-dependent 

monooxygenases, thereby preventing the oxidation of 

ent-kaurene to ent-kaurenoic acid. The third category 

includes synthetic analogs of 2-oxoglutaric acid, 

notably acylcyclohexanediones such as prohexadione-

Ca, trinexapac-ethyl and daminozide, which inhibit 3β-

hydroxylase enzymes and consequently block the 

formation of bioactive gibberellins from their inactive 

precursors. The fourth group involves 16,17-dihydro-

GA5 derivatives, which structurally resemble 

gibberellin precursors and are thought to competitively 

interfere with the same dioxygenase enzymes 

(Rademacher, 2000). Physiologically, these growth 

regulators primarily restrict vegetative expansion by 

reducing plant height, internodal growth, and leaf 

surface area, while concurrently intensifying 

chlorophyll content in leaves. Notably, they do not 

alter the number of internodes or leaves formed. 

Furthermore, they tend to stimulate root development, 

leading to an increased root-to-shoot biomass ratio 

(Tesfahun, 2018; Kuchenbuch and Jung, 1988). 

Paclobutrazol (PBZ), a bioregulator was initially 

introduced in 1986 and brought to the market by ICI 

Agrochemicals, which later became a part of syngenta 

(Orozco-Melendez et al., 2022). Paclobutrazol, a 

compound consisting of a β-(4-chlorophenyl) methyl 

group attached to an α-(1,1-dimethyl)-substituted 1H-

1,2,4-triazole ring linked to an ethanol moiety  is a 

major growth retardant which exists under multiple 

commercial names including PP 333, cultar, bonze, 

sadabahar, parley and clipper etc (Desta and Amare 

2021). It has a molecular weight of 293.8, a chemical 

formula of C15H20ClN3O, a melting point ranging from 

165°C to 166°C, a density of 1.22 g per ml and a water 

solubility of 35 mg per L. It contains hydrophilic 

regions, making it partially polar while also displaying 

hydrophobic properties (Jiyang et al., 2019).  

PBZ is a non-polar molecule known for its broad-

spectrum effects, primarily transported through the 

xylem, though its movement can also occur via the 

phloem depending on the method of application. The 

molecule contains two chiral centers (asymmetric 

carbons), resulting in two distinct pairs of enantiomers 

i.e. [(2R, 3R) & (2S, 3S)] and [(2S, 3R) & (2R, 3S)]. 

Of these stereoisomers, those with the 2S and 3S 

configurations exhibit greater efficacy in inhibiting 

gibberellin biosynthesis, while the 2R and 3R isomers 

degrade at a faster rate (Wu et al., 2015). PBZ acts 

within the terpene biosynthetic pathway as illustrated 

in Figure- 1, by blocking the synthesis of gibberellins. 

Specifically, it targets and inhibits ent-kaurene oxidase, 

the enzyme responsible for converting ent-kaurene into 

ent-kaurenoic acid. This inhibition leads to increased 

activity of geranylgeranyl reductase and phytoene 

synthase, enzymes that play key roles in the 

biosynthesis of chlorophyll and abscisic acid, 

respectively (Luo et al., 2019). 

By restricting gibberellin production, 

paclobutrazol effectively regulates the growth of 

various horticultural crops. Due to its ability to inhibit 

shoot elongation even at relatively low concentrations, 

it is considered more potent than most other growth 

retardants. The most prominent physiological effects of 

paclobutrazol on plants include reduced height, 

decreased lodging, increased compactness, and 

enhanced greenery due to a higher chlorophyll 

concentration per unit leaf area, along with improved 

seed set (Gilley and Fletcher 1997). Widely recognized 

for its growth-inhibiting properties across various plant 

species, PBZ-treated plants typically exhibit a more 

compact and shorter stature. Additionally, PBZ induces 

morphological and anatomical modifications in leaves, 

which vary depending on factors such as species, 

developmental stage, rate of application as well as 

method of application (Sebastian et al., 2002).  

Additionally, PBZ inhibits activity in the shoot apical 

meristem i.e., the region responsible for initiating leaf 

primordial by interfering with hormonal signals 

essential for cell division. Consequently, plants treated 

with PBZ develop stems that maintain the same 

number of internodes, but these internodes are 

shortened. Despite this reduction in length, cell 

division persists resulting in thicker stems (Fletcher et 

al. 2000), which may be attributed to the increased 

formation of palisade and spongy cell layers, as 

reported by Jaleel et al. (2007). PBZ application is also 

linked to a thicker layer of epicuticular wax in leaves 

(Jenks et al. 2001) and enlargement of epidermal, 

mesophyll as well as bundle sheath cells (Burrows et 

al., 1992). In addition to reducing plant height, PBZ 

prevents lodging, enhances productivity, lowers evapo-

transpiration and also mitigates moisture stress by 

increasing relative water content by optimizing leaf 

area

. 
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Fig. 1: Mode of action and physiological responses of paclobutrazol in various crops 

 

Paclobutrazol (PBZ) influences both vegetative 

growth and flowering processes by modulating the 

balance of key plant hormones, including gibberellins 

(GAs), abscisic acid (ABA) and cytokinins (CKs). It 

exerts its effects through the isoprenoid biosynthetic 

pathway, where it inhibits the synthesis of gibberellins 

and simultaneously promotes increased cytokinin 

levels. The blockage of GA production causes 

precursor molecules in the terpenoid pathway to 

accumulate, which subsequently enhances the 

biosynthesis of ABA (Lal et al., 2023). Elevated 

cytokinin concentrations contribute to increased 

chloroplast size and chlorophyll accumulation, and 

they also suppress apical dominance, leading to the 

proliferation of lateral shoots and a broader plant 

architecture. By restricting GA-mediated control of cell 

expansion, PBZ also supports continued chlorophyll 

synthesis, resulting in a greater chlorophyll density and 

a visibly greener leaf canopy compared to untreated 

controls. Additionally, the greening effect may be 

explained by the disruption of GGPP (geranylgeranyl 

pyrophosphate) conversion into ent-kaurene within the 

GA biosynthesis pathway. Since GGPP is a precursor 

for several compounds including chlorophyll, 

carotenoids, and tocopherols, its diversion toward 

chlorophyll synthesis increases pigment content 

(Kamran et al., 2020). Consequently, the intensified 

leaf greenness observed following PBZ application is 

likely due to both enhanced chlorophyll production and 

denser chloroplast distribution within the leaf tissue. 

Paclobutrazol also helps the plants become more 

resilient to both abiotic and biotic stresses. It 

minimizes various economically damaging fungal 

infections and functions as a highly effective systemic 

fungicide (Desta and Amare, 2021). The 2R and 3R 

enantiomers of paclobutrazol are particularly known 

for their potent antifungal activity and most potent 

suppressor of the 14α-demethylation process in plant 

systems (Burden et al. 1987). The selective activity of 

specific triazole isomers in inhibiting gibberellin 

biosynthesis as well as sterol biosynthesis could 

explain the reduction in disease incidence (Lenton, 

1994). This inhibition might have disrupted sterol 

biosynthesis, leading to disordered membrane 

functions due to the accumulation of 14 α-

methylsterols and a concurrent decline in ergosterol 

content, thereby inhibiting fungal growth (Haughan et 

al., 1989). Moreover, PBZ enhances the detoxification 

of reactive oxygen species (ROS) and boosts 

antioxidant levels during stress and the ageing process 

(Rady and Gaballah, 2012). ROS detoxification 

mechanism is present in all plant species involving 

enzymes such as superoxide dismutase (SOD), catalase 

(CAT) and peroxidase (POX). The PBZ-induced 

increase in these enzymes helps mitigate the effects of 

ageing in plants.  

Triazole compounds are believed to help protect 

cellular membranes from oxidative stress and lipid 

peroxidation under adverse environmental conditions 

by enhancing the tissue’s natural defense responses 

against reactive oxygen species (Fletcher and Hofstra, 

1990; Fletcher et al., 2000). In addition, paclobutrazol 

is known to trigger a range of metabolic and 

biochemical changes that improve a plant’s ability to 

withstand stress, which includes the development of 

seeds with elevated levels of antioxidant enzymes. This 
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review examines how paclobutrazol influences crop 

growth, productivity and physiological adaptations 

across different plant species. 

Effect of paclobutrazol on growth and physiology in 

vegetable crops 

Across various vegetables, paclobutrazol emerged 

as a powerful tool for optimizing growth and 

productivity. It primarily inhibits gibberellin 

biosynthesis, leading to reduced internodal elongation, 

compact plant growth and improved resource 

allocation. In crops like tomatoes, peppers and onions, 

PBZ application enhances flowering, fruit set and seed 

production by promoting reproductive growth over 

vegetative growth. Specifically, in onions PBZ reduces 

seed scape height, minimizes lodging and enhances 

seed yield & quality (Kumar et al., 2016). Its mode of 

action includes inhibition of energy transport to 

mitochondria and blocking gibberellin biosynthesis. As 

a result, cell elongation is restricted, leading to reduced 

above-ground growth while simultaneously enhancing 

photosynthesis and mineral uptake. This ultimately 

leads to a substantial enhancement in the overall yield 

of various root crops (Jabir et al., 2017). 

Prior investigations have highlighted the 

beneficial impact of PBZ treatment on various root 

crops, such as carrots and potatoes, improving both 

yield and overall plant quality. Additionally, it 

improves drought resistance, enhances chlorophyll 

content and delays senescence, contributing to better 

crop quality and yield stability. The exploration of role 

of paclobutrazol in vegetables began with Globerson et 

al. (1989), who discovered that spraying onions with 

100 ppm PP 333 reduced seed stalk length by 20-30%. 

Soaking bulbs in 500 ppm further decreased stalk 

length but inhibited leaf growth, causing plants to dry 

prematurely. Setia et al. (1995) advanced the research 

in Brassica carinata, finding that foliar application of 

PP 333 decreased plant height increased branching and 

boosted seed yield through higher siliquae production 

and prolonged leaf retention. In potatoes, Tsegaw et al. 

(2005) explored anatomical changes induced by 

paclobutrazol treated plants exhibited thicker stems, 

larger vascular bundles, and increased chlorophyll 

content, resulting in sturdier, more efficient growth. 

Tekalign and Hammes (2005) expanded this work in 

Ethiopia, applying paclobutrazol as a foliar spray or 

soil drench. They observed enhanced photosynthesis, 

reduced plant height, and lower transpiration rates, 

alongside increased chlorophyll levels. Years later, 

Ashrafuzzaman et al. (2009) also investigated PBZ at 

0, 20, 40 and 80 ppm on onions. They found that 80 

ppm PBZ significantly reduced plant height, leaves per 

plant, tillers per bulb, seed stalk height and seed yield, 

while also lowering umbel size, flower count, and fruit 

set. Tuna (2014) found that PBZ (40 mg L-1) enhanced 

chlorophyll, carotenoids, and antioxidants in tomato 

seedlings. Mutlu and Agan (2015) demonstrated that 

PBZ (5-15 ppm) reduced plant height by 25-50% in 

ornamental peppers, increased chlorophyll content, and 

delayed fruit set, suggesting it could replace pinching 

in greenhouse production. Kumar et al. (2016) studied 

onions and revealed that PBZ at 100 ppm significantly 

reduced seed scape height while increasing scape 

diameter, umbel size, seed setting, and seed yield. PBZ 

also improved seed quality by increasing 1000 seed 

weight, chlorophyll and seed antioxidant content. After 

that, Mabvongwe et al. (2016) found that early PBZ 

application in potatoes reduced stem length, tuber 

count and sugar content but increased starch content 

and yield. Grossi et al. (2017) observed in ornamental 

peppers that PBZ (30-150 mg L-1, foliar; 5-60 mg L-1, 

soil drench) reduced plant height and diameter by 10-

65%, while increasing leaf chlorophyll, though higher 

doses caused phytotoxicity. Phasri et al. (2019) applied 

PBZ (50 ppm) to Jerusalem artichoke, resulting in 

compact plants with improved inulin content and 

decreased flowers. Araujo et al. (2020) discovered that 

PBZ treatment (1.0-100 mg/litre) on potatoes 

decreased plant height & stem length by 18%, leading 

to denser planting and higher yields. However, its 

application requires precise dosage and timing to avoid 

negative effects on plant metabolism and productivity. 

Impact of paclobutrazol on growth and physiology 

in fruit crops 

Over the past decade, PBZ application has 

become a standard practice in fruit tree cultivation, 

yielding various effects (Orozco-Melendez 2021). 

Perennial fruits such as avocado, litchi, mango, citrus, 

temperate fruits and nuts are often affected by the 

intricate challenge of alternate bearing or cropping 

periodicity, coupled with inconsistent and erratic 

flowering patterns. These physiological constraints 

contribute to a substantial reduction in their yield 

potential (Kishore et al., 2015). Hence, paclobutrazol 

exhibits great potential in controlling flowering, 

improving yield and regulating vegetative growth in 

fruit crops. Paclobutrazol is known as a versatile plant 

growth regulator that inhibits excessive vegetative 

growth, stimulates flowering encouraging, early fruit 

production, managing biennial bearing and enabling 

the establishment of high-density plantations in several 

fruit crops (Gollagi et al., 2019). The following is a 

summary of multiple research efforts on the impact of 

paclobutrazol on the growth and physiology of fruit 

crops: 
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Table 1 : Impact of different doses and concentration of paclobutrazol in fruit crops 

Sr. 

No 
Fruit crop Dose Effect References 

1. 
Apple ‘Golden 

delicious’ 
1500-3000 ppm Reduction of shoot growth Greene (1982) 

2. Apple seedlings 500 ppm Reduction in shoot length 
Quinlan and Richardson 

(1984) 

3. Apple ‘MM.106’ 250 mg/ tree 
Reduction in number of total shoots 

and buds 
Khurshid et al. (1997) 

4. Sweet cherry 1.6 g a.i./ tree Vegetative growth Reduction Webster (1986) 

5. Mango 
12, 10 & 8 g 

a.i./tree 

Reduction in vegetative growth, 

length of reproductive shoots and 

canopy size, while enhancing fruit 

set and controlling panicle length. 

Nafeez et al. (2010) 

6. 
Mango ‘Tommy 

Atkins’ 
8.25 g a.i. /tree 

Reduced canopy size, vegetative 

growth and reproductive shoot flush 

length while regulating fruit set and 

panicle length. 

Teferi et al. (2010) 

7. Mango ‘Langra’ 6 g a.i./ tree 
Enhanced total chlorophyll,  α-

amylase activity  and caretonoids 
Singh and Saini (2001) 

8. Mango 

1.0 g a. i. 

m/canopy 

20-40 g/ tree 

Growth reduction, flower induction, 

increased yield as well as sex ratio 

Burondkar and Gunjate 

(1993) 

 

9. Plum ‘Santa Rosa’ 500 ppm 
Reduced shoot growth and 

increased fruit weight 
Jindal and Chandel (1996) 

10. Pear ‘Gala’ 0.15 g a.i. /tree Higer fruit yield Ratna and Bist (1997) 

11. Strawberry ‘Selva’ 100 mg/l 
Vegetative growth was reduced and 

highest vitamin C was obtained 
Abdollahi et al. (2010) 

12. 
Jackfruit ‘Eviarc 

Sweet’ 

1 g a.i./meter
 
of 

canopy diameter 

Higher female inflorescence 

production. 
Lina and Protacio, 2015 

13. Pineapple 150 mg L
-1

 
Extended harvesting time and 

increased produce. 
Antunes et al. (2008) 

14. Litchi 5 g /m
2 
plant spread 

Restricted vegetative growth and 

enhanced flowering 
Faizan et al. (2000) 

15. Avocado 1.0 % Increased yield Salazar-Garcia et al. (2013) 

16. Cashew nut 1-3 g /plant Growth regulation and nut yield Meena et al. (2014) 

17. Guava 1.0 g /plant Yield improvement Brar and Bal (2011) 

18. Mexican lime 15 g a.i./ plant Enhanced flowering 
Medina-Urrutia and 

Buenrostro-Nova (1995) 

19. Mandarin 1.0-2.0 g /plant Growth Regulation Dos Santos et al. (2004) 

20. Apricot 0.5-2.0 g a.i/ plant 
Reduced growth, boosted 

flowering, and enhanced yield 
Arzani and Roosta (2004) 

 

The data presented in the table clearly 

demonstrates the widespread use of paclobutrazol 

across various fruit crops that can increase both fruit 

quality and fruit yield, but there is cases of its residual 

effects, which may negatively impact consumer health. 

Moreover, it has been associated with environmental 

pollution, particularly affecting soil and groundwater 

(Wang et al., 2019). 

Impact of paclobutrazol on growth and physiology 

in floricultural crops 

In floriculture, paclobutrazol is used to effectively 

control the plant growth, ensuring compact, well-

structured plants ideal for commercial markets. It also 

enhances flowering, improves flower quality and 

optimizes resource allocation, leading to increase in 

plant spread as well as duration of flowering along 

with higher yields. Various studies collectively 

highlighted the role of paclobutrazol in controlling 

plant height, enhancing branching and improving 

aesthetics in floricultural crops. Fahl et al. (1985) 

studied the impact of paclobutrazol on chrysanthemum 

plants, finding that all concentrations reduced plant 

height, with 45 ppm showing the most significant 

reduction. Hong et al. (1986) and Hendriks (1987) 
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demonstrated that paclobutrazol applied at 50 ppm 

successfully reduced the height of geranium plants, 

with further studies showing a reduction in shoot 

growth by 5-45% with single and double treatments. 

Maus (1987) investigated the effects of paclobutrazol 

(50, 100, 200 ppm) and uniconazole on Hibiscus rosa-

sinensis, revealing that both treatments reduced plant 

height, promoted side shoots, and increased leaves and 

flowers per plant. High-intensity green colour was also 

observed in treated plants. Adriansen (1988) observed 

that a single drench of 40 ppm paclobutrazol was better 

than two foliar sprays in reducing the height of 

Pelargonium zonale. In a series of experiments, 

Kristensen and Adriansen (1988) explored the effects 

of various growth regulators on Hebe × franciscana 

cv. Variegata, discovering that paclobutrazol at 10 mg 

L
-1

 significantly enhanced inflorescence production, 

branch growth and controlled height. Farthing and Ellis 

(1990) tested cycocel and paclobutrazol on 

Pelargonium zonale cv. Ringo Scarlet, finding both 

growth regulators effectively reduced height while 

promoting branching and regulating vegetative growth. 

Wang and Blessington (1990) applied paclobutrazol 

and uniconazole to Codiaeum variegatum and 

Plectranthus australis, with paclobutrazol promoting 

short stems in croton and severely stunted growth in 

Swedish ivy even at low doses. Latimer (1991) 

evaluated paclobutrazol on marigold, zinnia and 

impatiens, reporting height reduction in zinnia and 

decreased shoot dry weight in marigold, though no 

significant effect on final height. Holcomb and Gohn 

(1995) recommended a 2 ppm drench of paclobutrazol 

for compact poinsettia plants. 

Building on the further understanding of 

paclobutrazol role in controlling plant growth, Auda et 

al. (2002) explored its effects along with mepiquat 

chloride and chlormequat on Barleria cristata, the 

Philippine violet shrub. Their study revealed that a 150 

ppm paclobutrazol treatment and a 2000 ppm 

chlormequat application resulted in the best outcomes, 

reducing vegetative growth and encouraging abundant 

flowering. Similarly, Niu et al. (2002) conducted two 

experiments to examine paclobutrazol’s impact on 

poinsettias, finding that applications starting 

immediately after short days and continuing until one 

week before anthesis significantly reduced plant height 

and bract area. The second experiment showed that a 

sub-application of paclobutrazol at 2 mg per litre 

reduced  height & bract area by 23 %, suggesting that 

delaying drench applications helps to prevent 

unwanted reductions in bract size. After that, Singh 

and Bist (2003) evaluated paclobutrazol impact on the 

growth and flowering of "Gruss-a-Teplitz" roses, 

finding that higher dosages (20-40 mg plant
-1

) reduced 

plant height but increased flower production. Similarly, 

Chen et al. (2004) demonstrated that paclobutrazol & 

uniconazole decreased plant height & inflorescence 

diameter in Ixora duffii, while advancing flowering. 

Karaguzel et al. (2004) observed that paclobutrazol 

shortened flowering time and increased flower number 

in Lupinus varius, with lower doses promoting growth 

and higher doses controlling height and inflorescence 

size. Abou-Dahab and Habib (2005) showed that 

paclobutrazol and pinching enhanced lateral growth 

and flower production in Barleria cristata, especially 

at 200 ppm. Misra et al. (2005) found that 

paclobutrazol enhanced early flowering in Rosa 

damascena and increased flower count when combined 

with ZnSO4. Later on, Ranwala et al. (2005) studied 

the impact of paclobutrazol, uniconazoleand ancymidol 

as pre-plant bulb treatments on hybrid lilies and found 

that combining uniconazole and paclobutrazol 

effectively reduced plant height. Nazarudin et al. 

(2007) applied paclobutrazol to Syzygium 

campanulatum and observed a significant reduction in 

plant height and leaf area, with lasting effects for up to 

five months. Sharma et al. (2009) found that 

paclobutrazol (25 ppm) as a pre-plant dip in Star Gazer 

lilies led to earlier bud initiation, more flowers and 

prolonged flowering. Mansuroglu et al. (2009) noted 

that paclobutrazol reduced vegetative growth in 

Consolida orientalis, with higher concentrations 

improving flower number and stem diameter. 

Various studies conducted in 2010 examined the 

impact of paclobutrazol on plant growth regulation. 

Currey and Lopez investigated the impact of pre-plant 

paclobutrazol bulb dips on Lilium longiflorum (easter 

lily), finding that plant height at flowering was reduced 

by 15-26%, with the highest concentration (120 mg L
-

1
) meeting commercial height requirements. Latimer 

and Freeborn tested uniconazole and paclobutrazol on 

Lilium lancifolium  and Lilium aurelianense, 

discovering that paclobutrazol dips were more 

effective in reducing plant height, especially at higher 

concentrations. Schnelle and Barrett studied 

paclobutrazol liner dips on bedding plants (Impatiens 

walleriana, Petunia × hybrida, and Scaevola aemula), 

showing that a 2 mg per litre, significantly reduced 

plant height. Shahrokhi et al. focused on turf grass, 

finding that a 40 mg L
-1

 concentration of paclobutrazol 

effectively controlled plant height during all stages of 

vegetative growth. Afterwards, Mishra and Yadava 

(2011) investigated the effect of paclobutrazol applied 

through root dips, drenches or foliar sprays on China 

aster, finding that higher concentrations reduced flower 

size and stalk length, while 25 ppm increased flower 

yield. Rathore et al. (2011) studied the impact of 

paclobutrazol and pinching on marigold, concluding 
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that 100 ppm enhanced water content, reduced plant 

height and boosted flower production. Wahyuni et al. 

(2011) tested paclobutrazol, gibberellic acid, and day 

length on cornflower and redmaids, finding that 

paclobutrazol at 0.25 mg plant
-1

 created compact plants 

but reduced inflorescence production. Ghait et al. 

(2012) evaluated paclobutrazol on hibiscus, noting 

reductions in plant height & leaf area, alongside 

increased leaf nutrient content & chlorophyll. 

Likewise, Youssef and Abd-El-Aal (2013) observed 

that paclobutrazol and cycocel treatments significantly 

reduced plant height and leaf area in Tabernae 

montana, while increasing the number of branches and 

leaves per plant. Lenzi et al. (2015) applied 

paclobutrazol to Dianthus hybrids and noted a 

reduction in plant height by up to 55 %, without 

affecting the number or size of inflorescences, though 

leaf greenness was improved. Heikal (2017) 

demonstrated that paclobutrazol inhibited growth in 

Sanchezia shrub, with higher doses causing the greatest 

reduction, while lower doses increased chlorophyll and 

mineral content in leaves. Kasim et al., (2018) reported 

that paclobutrazol spraying on Salvia splendens 

resulted in reduced height and increased chlorophyll 

content, showcasing its potential for growth regulation. 

In a series of experiments to study the role of 

paclobutrazol (PBZ) in flower crops, Xia et al. (2018) 

applied PBZ to herbaceous peony and found that a 100 

mg ml⁻¹ dose significantly reduced plant height while 

enhancing leaf greenness and chlorophyll content. 

Similarly, Li et al. (2020) studied PBZ’s effects on 

Cymbidium hybridum (orchid) and observed that 

concentrations of 300 mg L
-1

 promoted flower bud 

differentiation and reduced plant height, with lower 

concentrations stimulating antioxidant enzyme activity. 

In another experiment, Demir and Celikel (2021) 

immersed Narcissus tazetta (daffodil) bulbs in 

paclobutrazol and found that a 200 mg L
-1

 treatment 

resulted in a 59% decrease in plant height, reduced leaf 

area and increased leaf thickness. Furthermore, Malik 

et al. (2021) found that paclobutrazol (60 ppm) 

combined with cycocel (200 ppm) resulted in shorter 

plants, fewer leaves and earlier flowering in Asiatic 

lilies, alongside higher bulb yield and larger bulb 

diameter. Noor et al. (2022) applied foliar sprays of 

PBZ on Hibiscus rosa-sinensis, with 100 ppm PBZ 

enhancing plant characteristics such as more leaves, 

branches, flowers and higher chlorophyll content. 

Karagoz et al. (2023) applied different concentrations 

of PBZ to regulate seedling height in Gypsophila 

bicolor, with 1.5 mg per litre paclobutrazol reducing 

plant height while impacting leaf number. These 

studies highlight the role of paclobutrazol in improving 

growth control and promoting desired characteristics in 

floricultural crops. 

Impact of paclobutrazol on the growth and 

physiological responses of field crops 

According to earlier research, paclobutrazol 

serves as a highly effective plant growth regulator 

enhancing crop structure, reducing lodging, enhanced 

antioxidant activity and maximizing yield potential in 

field crops. A series of studies highlighted the 

significant effects of paclobutrazol on field crops. 

Hunter (1984) investigated its impact on ryegrass and 

found that it reduced lodging by restricting stem 

elongation and strengthening basal internodes, leading 

to increased seed weight, fertile tillers, and spikelets 

per spike. The study also noted that paclobutrazol’s 

effects varied with growth stage, promoting tillering in 

the vegetative phase and increasing florets per spikelet 

when applied during floret initiation. Similarly, Ozmen 

et al. (2003) observed that barley seedlings treated with 

40 mg paclobutrazol had shorter shoots, a higher root-

to-shoot ratio & elevated levels of SOD, carotenoids, 

and chlorophyll. Likewise, Mansour et al. (2010) 

assessed sunflower production and reported that 

applying 2000 ppm paclobutrazol resulted in the 

shortest plants. Gomez et al. (2011) investigated the 

impact of paclobutrazol (PBZ) on quinoa and found 

that PBZ decreased plant height, increased seed yield, 

& decreased leaf area index while enhancing SPAD 

values and specific leaf weight. Xu et al. (2013) 

studied PBZ application on Jatropha curcas and 

observed improved reproductive growth, increased 

fruit load, and reduced vegetative growth, including 

shorter new branches. Hua et al. (2014) explored PBZ's 

role in optimizing canola height for mechanical 

harvesting, revealing that application at a 10 cm stalk 

height reduced plant height by 27% and boosted seed 

yield by 21%. The study linked yield improvement to 

enhanced branching ability and efficient carbohydrate 

utilization. 

In various experiments conducted in 2015, the 

role of paclobutrazol (PBZ) in improving crop 

architecture, reducing lodging, and enhancing yield 

was extensively studied. Koutroubas and Damalas 

found that repeated PBZ applications in sunflower 

reduced plant height by up to 14.4% while increasing 

achene yield by 25%. Similarly, Kuai et al. (2015) 

demonstrated that PBZ foliar sprays at 150 and 300 mg 

L
-1

 in rapeseed significantly improved lodging 

resistance. Though seed number per pod decreased, an 

increase in pod count and seed weight contributed to 

higher yields. Yuan et al. (2015) examined PBZ in flax 

and discovered that early applications at the seedling 

and rapid growth stages effectively reduced plant 
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height. Following that, Syahputra et al. (2016) 

examined the impact of different paclobutrazol 

concentrations on rice, finding that higher PBZ levels 

reduced plant height and leaf area while enhancing 

lodging resistance, spikelet number, grain filling, and 

overall yield. Barman et al. (2018) evaluated PBZ in 

groundnut, showing that double sprays of 250 ppm 

significantly decreased plant height by 28% while 

improving pod number, dry pod yield, and economic 

returns. Kamran et al. (2018) investigated PBZ 

application methods in maize, revealing that both seed-

soaking and seed-dressing improved culm strength, 

increased lignin accumulation in basal internodes, and 

reduced lodging risk. Furthermore, the application of 

PBZ increased the activity of important enzymes like 

4-coumarate CoA ligase (4CL), phenylalanine 

ammonia-lyase, peroxidase, and cinnamyl alcohol 

dehydrogenase, which improved the structural integrity 

of the stalks and increased lignin synthesis. According 

to their results, PBZ at 300 mg L
-1

 or 3.5 g kg
-1

 

efficiently improved plant architecture, strengthened 

stalks, and increased enzymatic activity for increased 

yield. Mepiquat chloride and paclobutrazol were tested 

on paddy in recent studies by Mukherjee (2020), who 

discovered that both decreased internode and culm 

length while increasing culm diameter. Mepiquat 

chloride at 50 g a.i. ha
-1

 and paclobutrazol at 25–50 g 

a.i. ha
-1

 produced the highest grain yield, indicating 

better plant architecture and less lodging. In groundnut, 

Goswami et al. (2022) found that paclobutrazol at 150 

ppm applied twice resulted in higher dry matter and 

pod yield, with up to an 18% increase over the control. 

Panda et al. (2023) applied paclobutrazol to chickpea 

at different concentrations, concluding that it reduced 

plant height and delayed flowering, with 35 ml ha⁻¹ 

providing the highest yield, demonstrating its potential 

in modifying reproductive phenology and boosting 

yields. Similarly, Sarkar (2023) examined PBZ's 

impact on sunflower (Helianthus annuus L.), finding 

that PBZ-treated plants exhibited a compact stature 

with dark green leaves and increased chlorophyll and 

carotenoid content, although plant height was 

significantly reduced with no notable change in stem 

girth. Zhao et al. (2023) also investigated the role of 

PBZ in peanut cultivation. They discovered that 

applying PBZ decreased lodging by increasing 

chlorophyll content and reducing plant height. A 100 

mg L
-1

 application of PBZ was the best combination 

for optimizing peanut yield. 

Impact of paclobutrazol on growth and physiology 

in herbs 

Plants like sweet basil and Ocimum sanctum (holy 

basil) are significantly impacted by paclobutrazol 

(PBZ) in terms of their growth and antioxidant 

qualities. In Ocimum sanctum, PBZ enhances the 

plant's free radical scavenging ability and boosts 

antioxidant levels, including enzymes like SOD, CAT, 

and ascorbate peroxidase (APX) (Nair et al. 2009). In 

sweet basil, PBZ regulates plant height and improves 

decorative qualities, with higher concentrations (10 or 

20 ppm) leading to more compact, bushy plants and 

increased leaf chlorophyll content (Kurniawati et al.,  

2023). 

Conclusion 

Paclobutrazol serves as a reliable growth 

suppressant with broad applicability in horticulture and 

agriculture, significantly improving plant architecture, 

stress resilience, and yield quality across various crop 

species. Its ability to regulate gibberellin biosynthesis, 

influence other phytohormones and optimize 

vegetative growth makes it a valuable tool for 

enhancing productivity and resource efficiency in 

modern farming systems. However, despite its 

numerous benefits, concerns regarding its residual 

accumulation in soil and potential environmental 

impact necessitate further investigation. Future 

research should focus on optimizing application rates 

for different crops and environmental conditions to 

maximize benefits while minimizing any adverse 

effects. Additionally, exploring PBZ alternatives with 

lower environmental impact, integrating its use with 

sustainable agricultural practices, and assessing its 

long-term physiological and ecological effects will be 

crucial for ensuring its continued effectiveness in 

precision agriculture. Moreover, advancements in 

nanotechnology and formulation techniques could 

enhance PBZ efficiency and reduce its environmental 

footprint 
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